The KM3NeT Neutrino Telescope

: Antes

N. Eller

Exploring the High Energy universe

 ν and γ produced in the interaction of high energy nucleons with matter or radiation

$$N + X \rightarrow \pi^{\pm} (K^{\pm} ...) + Y \rightarrow \mu^{\pm} + (\mu (v_{\mu}) + Y)$$

$$e^{\pm} (v_{e}(v_{e}) + v_{\mu}(v_{\mu}))$$

$$N + X \rightarrow \pi^{0} + Y \rightarrow (\gamma \gamma + Y)$$

cosmic ray acceleration yields neutrinos and gammas with similar abundance and energy spectra

Neutrinos are unique messengers!

- no interactions with ambient matter or radiation
- no deflection by magnetic fields
- information on the internal processes of the astrophysical sources inaccessible through photons or cosmic rays

You can find more information <u>here</u>

Underwater Neutrino Telescopes

Background sources

- Atmospheric muons & neutrinos: produced by Cosmic Ray interactions in the atmosphere
- Background from ${}^{40}K$ decays and from bioluminescence (life forms in the deep sea emitting light)

- Upward-going neutrinos interact in rock or water
- Charged particles (in particular muons) produce Cherenkov light in water at 43° with respect to the neutrino direction
- Light is detected by array of photomultipliers
- Muon direction is reconstructed using PMT positions and photon arrival times
- The Earth provides screening against all particles except neutrinos

The different neutrino detection "signatures"

The KM3NeT Collaboration

57 institutes and groups in 47 cities (white dots) in 18 countries (orange) on 4 continents - November 2019

You can see in detail the institutes participating in the collaboration <u>here</u>

High-energy neutrino astrophysics

The detector components

Glass sphere Cooling system Power Board + CLB Pressure gauge Nanobeacon Octopus Boards Acoustic sensor PMT support structure (3D printed) PMTs + reflector rings **Base Boards** Penetrator SFP Fibre tray

<u>Here</u> you can find more information about the KM3NeTDOM

Uniform angular coverage Directional information Digital photon counting Wide angle of view

The KM3NeT detectors

ARCA: Observe high energy (>TeV energy regime) neutrinos from astrophysical sources

ORCA: Determine the ordering of the neutrino mass eigenstates

Building Block: • 115 DUs

- 18 DOMs / DU
- 31 PMTs / DOM

	ARCA	ORCA
DU spacing	~ 90 m	~ 20 m
DOM spacing	~ 36 m	~ 9 m
Depth	3400 m	2475 m

Installation method

Rapid deployment Autonomous unfurling Multiple DUs per sea campaign Easy recovery – floats to the surface for recycling

Event: The set of information recorded by the infrastructure in a certain time interval, when the criteria that have been set for an event of interest, e.g. the detection of a neutrino interaction near the detectors, are satisfied.

<u>**Reconstruction**</u>: The process of determining the particle track (vertex position, direction etc.) as well as other parameters such as the particle energy, using the signals recorded in the event.

<u>Here</u> you can see some reconstructed event displays in the current (9/2020) ORCA detector that consists of 6 DUs